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Abstract 

This paper deals with the notion of a large financial market and the concept of 
asymptotic no-arbitrage. This concept is closely related to that of contiguity of the 
equivalent martingale measures. Here, assuming a time varying ARCH return   
for financial asset, we derive the stochastic expansion of the log-likelihood ratio  
for the equivalent martingale measure. Then we give a sufficient condition that, 
there is no asymptotic arbitrage. Related to this condition, a test statistic for this 
is proposed. The asymptotics are elucidated. Numerical studies of the test are 
provided, and they show that our test is useful for testing asymptotic no- 
arbitrage. 

1. Introduction 

We introduce a large financial market as a sequence of ordinary 
security market models in discrete time. The large financial market is 
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described by a sequence of standard general models of continuous 
trading. According to Kabanov and Kramkov [10], paying attention to 
such market is connected to detect the absence of asymptotic arbitrage. In 
any economic equilibrium, it should not be possible to purchase at zero 
cost a bundle of goods that will strictly increase some agent’s utility. For 
as long as such an ‘arbitrage opportunity’ exists, the agent in question 
will purchase the bundle, and one will continue to do so until either its 
price rise or it ceases to increase one’s utility. The absence of arbitrage 
opportunities is thus a necessary condition for an economic equilibrium. 
In the literature of economics, most of them have considered many 
strategies under the absence of arbitrage opportunities (e.g., Gurupdesh 
[6]). However, we investigate whether there exist the arbitrage 
opportunities because this investigation is more important than the 
consideration of the above strategies. It is shown that, this property is 
closely related to the contiguity of the equivalent martingale measures. 
As one of the crucial roles in the theory of asymptotic arbitrage, there is a 
concept of contiguity of probability measure. We discuss the problem of 
statistical testing for asymptotic no-arbitrage in financial markets in 
terms of the asymptotic properties of the likelihood ratio and in terms of 
contiguity. In this paper, denoting by NtX ,  the value of a financial return 

at time t with observation length N, we assume that { }NtX ,  is generated 

by a time varying ARCH (tv ARCH) model with mean ,, Ntµ  volatility 

,, Ntσ  and innovation density ( ).⋅φ  Then, the asymptotics of the log-

likelihood ratio NΛ  between the original probability measure NP  and an 

equivalent martingale measure NP~  are investigated. Based on them, we 
give a sufficient condition that there is no asymptotic arbitrage. Next, a 
statistic for testing no asymptotic arbitrage is proposed. Dahlhaus and 
Rao [3] developed a systematic asymptotic estimation theory for tv ARCH 
models. Thanks to their results, we can show that the test statistic 
converges in probability to a quantity, which describes the sufficient 
condition. Numerical studies for testing no asymptotic arbitrage are 
given, and they illuminate some interesting feature of our problem. 
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Concretely, this paper is organized as follows. Section 2 gives the 
stochastic expansion of NΛ  under ,NP  which leads to a sufficient 

condition that there is no asymptotic arbitrage in our financial market. 
The sufficient condition is described by a fundamental quantity ,, NtA  

which depends on NtNt ,, , σµ  and ( ).⋅φ  For concrete distribution forms of 

( ),⋅φ  we can write the no asymptotic arbitrage condition in terms of Nt,µ  

and ., Ntσ  In Section 3, we propose a consistent estimator NtA ,ˆ  of NtA ,  

by use of Dahlhaus and Rao’s results [3]. For a tv ARCH model, Section 4 

provides numerical studies for ,ˆ , NtA  and shows that our test is useful in 

the testing problem. The proofs of the results are relegated to Section 5. 

2. Asymptotic No-arbitrage 

First, we introduce a financial asset model. Let ( ,,,1,, NtS Nt …=  

),N∈N  be generated by 

{ } ,,exp ,,,,1,0, , tNtNtNtXNNNt XXSS Nt σ+µ== ++"   (2.1) 

where 

,, 




µ=µ N

t
Nt   (2.2) 

( ) ,2
,,

1
0

2
, NjtNjtj

p

j
Nt XN

taN
ta −−

=

µ−




+





=σ ∑   (2.3) 

and t ’s are independent and identically distributed (0, 1) with p.d.f. ( ).⋅φ  

NtS ,  is supposed to be the value of financial asset at time t with 

observed stretch N. Let Nt,F  be the -σ algebra generated by ( ,,,1 …NX  

),, NtX  and assume that ., ,1
2
,, NtNtNt −∈σµ F  

We set down the following assumptions. 
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Assumption 1. The stochastic process { }NtX Nt ,,1:, …=  has a 

time varying ARCH(p) (tv ARCH(p)) representation defined in (2.1), 
where the parameters satisfy the following properties. There exist 
constants ,10,,,0 <<∞<ρ< νMQ  and a sequence ( ){ }jl  of positive 

numbers such that ( ) ρ>uau 0inf  and 

( ) ( ) ,sup jl
Qua j

u
≤  

 ( ) ( ),11

1
ν−≤∑

∞

=
jlQ

j
 

( ) ( ) ( ) ,jl
vuMvaua jj

−
≤−  

where ( ){ }jl  satisfies 

( ) .
1

∞<∑
≥

jl
j

j
 

An example of such a sequence ( ){ }jl  is 

( )




>
=

= κ+ ,1log
,11

12 jjj
j

jl  

with some 0>κ  or 

( ) ,jjl η=  

for some .1>η  Condition ( ) ( )ν−≤∑
∞

=
11

1 jlQ
j

 implies that ( )2
, NtE σ  is 

uniformly bounded over t and N. 

Assumption 2. (i) For some ( ( ) ) .,0 14 ∞<>δ δ+
tE   

(ii) There exists an interval 0I  such that ( ) 0>φ x  on I. 

Let Ω  be a compact set defined by 
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( ) ( )


 ≤αααα=′µ==Ω ∑ =

,1:,,,,,
110 j

p

jp…ααθ  

 ,,,,1for,, 1201


∈µ=α≤ρρ≤α≤ρ Rpii …  

where .0 21 ∞<ρ<ρ<  

Assumption 3. (i) ( ( ) ( ) ( ) ( )) Ω∈′µ≡ uauauau pu ,,,, 10 …θ   for each 

[ ].1,0∈u  

(ii) ( )⋅µ  and ( )⋅ja ’s are continuously three times differentiable, and 
there exists a positive constant C such that 

( ) ( ) ,sup,sup C
u

uC
u

ua
i

i

ui
j

i

u
≤

∂

µ∂≤
∂

∂
 

for 3,2,1=i  and .,,1,0 pj …=  

Let NP  be the probability distribution of ( )NNN XX ,,1 ,, …  and NP~  

be a probability distribution satisfying 

{ } ( ),..-~~
,1,1, saPSSE NNtNtNt −− =F   (2.4) 

where ( )⋅E~  is the expectation with respect to .~
NP  Write ( )Nt,

~ σφ  

{ } ( ) .6exp , dxxxNt φ= ∫
∞

∞−
 

If ( )NtNt ,,
~log σφ−=µ  under ,~

NP  then NtS ,  is a martingale 

satisfying (2.4). In fact, 

{ } { }Nt
X

NtNtNt
NteESSE ,1,1,1,

,~~
−−− = FF  

{ }NtNt
tNtNt eEeS ,1,1

,, ~
−

σµ
−= F

  

( )NtNt
NteS ,,1

~, σφ=
µ

−   (2.5) 

( )NtNteS Nt
,,

~log
,1

σφ+µ
−=  
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.,1 NtS −=  

Define the likelihood ratio NZ  between NP  and NP~  by 
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(2.6) 

where 

( )
.

~log
,

,,
,

Nt

NtNt
NtA

σ
σφ+µ

=  

The log-likelihood ratio NΛ  has the following representation. 

{ ( ) ( )}.logloglog ,
1

tNtt

N

t
NN AZ  φ−+φ==Λ ∑

=

  (2.7) 

Further, we make the following assumption on ( ).⋅φ  

Assumption 4. (i) ( )⋅φ  is continuously three times differentiable on 
R. 

(ii) dx
dD =  and ∫ are interchangeable. 

(iii) ( ) ( ) ., 2 ∞<φ∞<φ ∫∫ dxxDdxxD  

(iv) ( ) ( )
( ) .

2
∞<








φ
φ

≡ ∫ dxx
xDF  

Then, we have the following result. 

Theorem 1. Suppose that Assumptions 1-4 hold. If OAE Nt =2
,  

,log
1








Nt  then the log-likelihood ratio NΛ  has the following stochastic 

expansion under ;NP  
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( ) ( ),12
1 2

,
1

pNt

N

t
N oAS +−=Λ ∑

=

F   (2.8) 

where S is a random variable satisfying ∞<<−∞ S  a.s., and 2
,

1
Nt

N

t
A∑

=
 

∞<  a.s. 

The proofs of the theorems are relegated to Section 5. From the above, 
we have the following result. 

Corollary 1. Under the same assumptions as in Theorem 1, 

{ } .10lim =>
∞→ NN

ZP  

From Corollary 1, Theorem 1 of Shiryaev ([11], Chapter VI, Theorem 
1, p. 560) implies that, for the financial asset { },, NtS  there is no 

asymptotic arbitrage. 

Next, assuming a special form of ( ),⋅φ  we consider conditions for 

2
,, , NtNt σµ  to satisfy the assumption .log

12
, 





= NtOAE Nt  

Corollary 2. Assume that t ’s are i.i.d. symmetric -α stable r.v.’s for 

.21 ≤α<  This means that, the moment generation function (not 
characteristic function) of 1  is given by 

( ) ( ) ,,~ 01 R∈==φ
ασ− teeEt tt   (2.9) 

with a scaling factor .00 >σ  In this case, if 

a.s.,,
log
11

,0
,

,

Nt
CNt

Nt

Nt ≤σσ−
σ
µ −α   (2.10) 

for some ,0>C  and ,,,1 Nt …=  then 





= NtOAE Nt log

12
,  holds. 

It is known that, if { }t,2=α  follows Gaussian distribution, if 

,1=α  { }t  follows Cauchy distribution, which has infinite mean. 
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3. Estimation and Test 

In this section, we consider estimation of ., NtA  We first define a 

segment (kernel) estimator of ( ( ) ( ) ( ) ( ))′µ= 001000 ,,,,0 uauauau pu "θ  

for ( ].1,00 ∈u  Let Nt ∈0  such that .100 NNtu <−  The estimator 
considered in this section is the minimizer of the weighted quasi-
likelihood 

( ) ( ),1: ,
0

1
,0 θθ Nk

N

k
Nt lbN

ktWbN 





 −

= ∑
=

L   (3.1) 
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2
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with ( ) ( ) ,2
,

1
0, µ−α+α= −

=
∑ Njkj
p

j
Nk Xw θ  

and R→



− 2

1,2
1:W  is a kernel function of bounded variation with 

( ) 12
1

2
1 =∫ − dxxW  and ( ) .02

1

2
1 =∫− dxxxW  That is, we consider, 

( ).minargˆ ,, 00 θθ θ NtNt LΩ∈=   (3.2) 

Then, we have the following result. 

Theorem 2. Suppose that { }NtX Nt ,,1:, …=  is generated by the tv 

ARCH(p) process, which satisfies Assumptions 1-2, and the estimator 

( )′µ= NtNtNt ,,, 000
ˆ,ˆˆ aθ  is defined by (3.2). Then, if ,100 NNtu <−  

we have 

( ( ( ) ))

( )

( ) ( ( ))
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≡

θ
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Let us give an example of asymptotic no-arbitrage test. 

Consider the testing problem 

:H0  there is no asymptotic arbitrage 

v.s. 

:H1  there is asymptotic arbitrage. 

Under ,H0  we assume that { }t  follows -α stable distribution defined 

by (2.9) and 

.
log ,,0, NtNtNt Nt
C σ+σσ=µ α   (3.3) 

Then, { }NtX ,  satisfies the condition (2.10), which implies that there is no 

asymptotic arbitrage from Corollary 1. In this case, from Dahlhaus and 

Rao [3], it is seen that the estimator NtA ,0
ˆ  defined in Theorem 2 has the 

asymptotic normality 

( ) ( ).,0ˆ ,, 00 Ω→− NAAN
d

NtNt  

Thus, 

(i) ( ),,01ˆ ,, 00 Ω+≈ N
N

AA NtNt  

(ii) 







=

Nt
OA Nt log

1
0

,0  a.s., 

which implies that, if ( ),ogl0 NNot =  

( )1ˆlog ,0 0 OANt Nt =  a.s. 

In view of this, if we plot ,ˆlog ,0 0 NtANt  we can detect the existence of 

asymptotic arbitrage (see Figures 1 and 2). In practice, Ω  is often 

unknown, but we may ignore ( )Ω,01~ N
N

Z  because Z converges 
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faster than NtA ,0  under ( ).ogl0 NNot =  In addition, it is easy to see 

that, the test statistic NtANt ,0 0
ˆlog  diverges under alternative 

hypothesis. 

4. Simulation 

In this section, we examine our approach numerically to verify the 
result of Corollary 2. Similar to Corollary 2, { }t  is supposed to be a 

sequence of -α stable r.v.’s. Under the condition, we plot .ˆlog ,0 NtANt  

Example 1. Let the process { }NtX ,  be the tv ARCH(1) model defined 

by, 

,,,, tNtNtNtX σ+µ=  

where ( ) ,, 2
,1,110

2
,, NtNtNtNt XN

taN
taN

t
−− µ−






+






=σ






µ=µ  

and t ’s are i.i.d. symmetric -α stable r.v.’s defined by (2.9). In order to 

satisfy condition (2.10), we assume that, 

,
log ,,0, NtNtNt Nt
C σ+σσ=µ α  (4.1) 

{ ( ) }.2
,1,110

2
, NtNtNt XaaN

t
−− µ−+






=σ  (4.2) 

Given { } ( ),,, ,,1, NNNNt XXX …=  a segment (kernel) estimator 

{ } ( )NNNNt ,,1, ˆ,,ˆˆ
0 θθ=θ …  is obtained by (3.2). Finally, from { },ˆ ,0 Ntθ  

we obtain the estimator { } ( )NNNNt AAA ,,1, ˆ,,ˆˆ
0 …=  of { }.,0 NtA  

Model 1. In Figure 1, we plot the graph of NtANt ,0
ˆlog  for 2=α  

(Gaussian distribution), N = 10(10)1000, ( ) 6,2.0,5.0 10 === xWaa  

,log,4
1

0
2 Ntx =





 −  and .log1.0,1.0 NC ×=  
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Figure 1. .0.2=α  

From (2.10), C should be a constant value, which implies that the null 
hypothesis should be rejected in the case of .log1.0 NC ×=  Indeed, the 

test statistic NtANt ,0
ˆlog  tends to increase as N increases. On the 

other hand, in the case of NtANtC ,0
ˆlog,1.0=  converges to a constant 

value as N increases. 

Model 2. In Figure 2, we plot the graph of NtANt ,0
ˆlog  under 

Model 1 with .5.1=α  
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Figure 2. .5.1=α  

Similarly to Figure 1, in the case of ,1.0=C  the test statistic 

NtANt ,0
ˆlog  converges to a constant value, and in the case of 1.0=C  

Nlog×  tends to increase as N increases. However, because of heavy tail 

of the innovation distribution, the fluctuation of NtANt ,0
ˆlog  is larger 

than that of Figure 1. 

In practice, we need to define the rejection region of the test above. 
For example, by use of bootstrap, we can construct the empirical 

distribution of ,ˆlog ,0 NtANt  then the rejection region can be 

constructed based on this empirical distribution. 

5. Proofs 

In this section, we give the proofs of results in the previous sections. 

Proof of Theorem 1. From Corollary 5.1.5 of Fuller [4], it is seen 
that Taylor expansion of ( )xt +φ log  at 0=x  leads to, 

( ) ( ) ( )
( )

( ) ( ) { ( )}
( )2

22
,, 2

1loglog
t

ttt
Nt

t
t

tNtt
DDADA








φ

φ−φφ
+

φ
φ

+φ=+φ  
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(( ) ).log 2
32

,
−+× NtOA pNt  (5.1) 

From (5.1), we obtain 
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which implies 
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.∞<  (by Assumption 4(iii) and (iv))  (5.4) 

Hence, { }NtY ,  is a martingale difference sequence. By Doob’s martingale 

convergence theorem (Hall-Heyde [7], Theorem 1.3.9), there exists a 
random variable S such that ,∞<SE  and 

,,
1

SY Nt

N

t
→∑

=

      a.s.  (5.5) 

Since, 0, 2
,

2
,

1
≥∞<∑

=
NtNt

N

t
AAE  a.s., and ,∞<SE  we observe that, 

,2
,

1
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N

t
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From (5.2), (5.5), and (5.6), it follows that 
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which together with (5.6) implies the conclusion (2.8).   

Proof of Corollary 1. Recall ,exp NNZ Λ=  and by Theorem NΛ,1  
−∞>  a.s., i.e., { } .1lim =−∞>Λ

∞→ NN
P  Therefore, 

{ } { } .1lim0lim =>=> −∞Λ
∞→∞→

eePZP N
NNN

  

Proof of Theorem 2. First, by Theorem 2 of Dahlhaus and Rao [3], 
we can see 
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Now, { }0uθ  is a parameter of ARCH process { ( )}.~
0uXt  For each 

given ( ],1,00 ∈u  the stochastic process { ( )}0
~ uXt  is a stationary ARCH 

process associated with the tv ARCH(p) process at times point .0u  
Similar to Theorem 1 of Dahlhaus and Rao [3], we can show 
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, 00

uXX t
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2
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j
t ∑

∞

=
+=σ  

( ( ) ( )) .~ 2
00 uuX jt µ−−  

From (5.7) and (5.8), it follows that 
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(5.9) 

and 

( ).ˆ 0
0 uN

t p
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




µ   (5.10) 

Since φ~  is continuous, we obtain 
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Therefore, from (5.9), (5.10), and (5.11), we can see that 
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