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Abstract

This paper deals with the notion of a large financial market and the concept of
asymptotic no-arbitrage. This concept is closely related to that of contiguity of the
equivalent martingale measures. Here, assuming a time varying ARCH return
for financial asset, we derive the stochastic expansion of the log-likelihood ratio
for the equivalent martingale measure. Then we give a sufficient condition that,
there is no asymptotic arbitrage. Related to this condition, a test statistic for this
is proposed. The asymptotics are elucidated. Numerical studies of the test are
provided, and they show that our test is useful for testing asymptotic no-

arbitrage.

1. Introduction

We introduce a large financial market as a sequence of ordinary
security market models in discrete time. The large financial market is
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described by a sequence of standard general models of continuous
trading. According to Kabanov and Kramkov [10], paying attention to
such market is connected to detect the absence of asymptotic arbitrage. In
any economic equilibrium, it should not be possible to purchase at zero
cost a bundle of goods that will strictly increase some agent’s utility. For
as long as such an ‘arbitrage opportunity’ exists, the agent in question
will purchase the bundle, and one will continue to do so until either its
price rise or it ceases to increase one’s utility. The absence of arbitrage
opportunities is thus a necessary condition for an economic equilibrium.
In the literature of economics, most of them have considered many
strategies under the absence of arbitrage opportunities (e.g., Gurupdesh
[6]). However, we investigate whether there exist the arbitrage
opportunities because this investigation is more important than the
consideration of the above strategies. It is shown that, this property is
closely related to the contiguity of the equivalent martingale measures.
As one of the crucial roles in the theory of asymptotic arbitrage, there is a
concept of contiguity of probability measure. We discuss the problem of
statistical testing for asymptotic no-arbitrage in financial markets in
terms of the asymptotic properties of the likelihood ratio and in terms of
contiguity. In this paper, denoting by X; n the value of a financial return

at time ¢ with observation length N, we assume that {X, y | is generated
by a time varying ARCH (tv ARCH) model with mean p, p, volatility
o;, N, and innovation density ¢(-). Then, the asymptotics of the log-
likelihood ratio A between the original probability measure Py and an

equivalent martingale measure f’N are investigated. Based on them, we

give a sufficient condition that there is no asymptotic arbitrage. Next, a
statistic for testing no asymptotic arbitrage is proposed. Dahlhaus and
Rao [3] developed a systematic asymptotic estimation theory for tv ARCH
models. Thanks to their results, we can show that the test statistic
converges in probability to a quantity, which describes the sufficient
condition. Numerical studies for testing no asymptotic arbitrage are

given, and they illuminate some interesting feature of our problem.
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Concretely, this paper is organized as follows. Section 2 gives the

stochastic expansion of Ay under Pp, which leads to a sufficient

condition that there is no asymptotic arbitrage in our financial market.

The sufficient condition is described by a fundamental quantity A; y,
which depends on p, x, 6; ; and ¢(). For concrete distribution forms of
¢(-), we can write the no asymptotic arbitrage condition in terms of p;

and o; y. In Section 3, we propose a consistent estimator A; ; of A; n

by use of Dahlhaus and Rao’s results [3]. For a tv ARCH model, Section 4

provides numerical studies for At, N, and shows that our test is useful in

the testing problem. The proofs of the results are relegated to Section 5.
2. Asymptotic No-arbitrage

First, we introduce a financial asset model. Let St,N,(t =1,..., N,

N € N), be generated by
Si,n =SoNexp{Xy Niowx, y)» XeN =Ry N +Or NG (2.1

where

W N = “(WJ’ (2.2)

p
¢ 4 2
LN =g (ﬁ) + Zaj(ﬁ)(Xt—j,N ~M-jn)s (2.3)

and ¢, ’s are independent and identically distributed (0, 1) with p.d.f. ¢(-).

S; N is supposed to be the value of financial asset at time t with

observed stretch N. Let 7, y be the o-algebra generated by (X; p, ...,

X, n ), and assume that p,; y, ctz’N € Fi1N-

We set down the following assumptions.
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Assumption 1. The stochastic process {X; y :¢=1,..., N} has a

time varying ARCH(p) (tv ARCH(p)) representation defined in (2.1),
where the parameters satisfy the following properties. There exist

constants 0 < p, @, M < », 0 <v <1, and a sequence {I(j)} of positive

numbers such that inf,, ag(x) > p and

sgpaj(u) < %,

i%ﬁ 1—1/)

ju—dl

1)

laj(u)-a;) < M
where {I(j)} satisfies
J
— < 0
; 1)
An example of such a sequence {I(j)} is

. 1 j=1,
zm:{.z Lo

J7logm ™" j j>1,

with some x > 0 or

1(j) = n’,
for some n > 1. Condition QZ% < (1 -v) implies that E(GEN) is
=1

uniformly bounded over ¢t and N.
. . 4(1+3)
Assumption 2. (i) For some 8 > 0, E(|¢| ) < oo
(i) There exists an interval I > 0 such that ¢(x) > 0 on L

Let Q be a compact set defined by
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! p
Q = {9 = (],,L, (X,),(X. = (ao, (Xl, eey (xp) . Zj:laj < 1,

p1 £0g <pg,pp <oy, fori=1,...,p,pn eR},
where 0 < p; < pg < .
Assumption 3. (i) 0, = (u(w), ap(u), o, (), ..., ap(u))’ e Q for each
u e [0, 1].

(i) u() and a;(-)’s are continuously three times differentiable, and

there exists a positive constant C such that
o'a j (w)
ou'

aiu(_u)

< C, sup
ou’

u

sup <C,

u

fori=1,2,3and j=0,1, ..., p.

Let Py be the probability distribution of (X y, ..., Xy n) and Py

be a probability distribution satisfying

~

E{S; n|Fioin} = Sicin (Py-as.), (2.4)
where E() is the expectation with respect to Py. Write $(ct, N)

= jjooo exp {6t,Nx}<])(x) dx.

If w N =—10g$(0t,N) under Py, then S; N is a martingale

satisfying (2.4). In fact,

~ ~ X,
E{St,N|JTt—1,N} = St—l,NE{e 1K’N|5"—t—1,N}‘

H¢, N 77¢ Ot, N
= St,LNe E{e j:t—l,N}

= Stfl,Neut’NE(Gt,N) (2.5)

_S Neut,N+10g$(0t,N)

s
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= S;1,N-

Define the likelihood ratio Z between Py and ﬁN by

1 ¢{Xt,N + log E(Gt,N)}

P dﬁN :ﬁct,l\’ St, N :l—N[d){etJrAt,N}
N dPy k) 1 o Xt,N —Hy N -1 ¢{ft} ’
O, N S, N
(2.6)

where

ue N +log ¢(o; )
O, N '

AN =

The log-likelihood ratio A has the following representation.

N

Ay =logZy = Y {log (e, + Ay ) - log d(c, )} 2.7
t=1

Further, we make the following assumption on ¢(-).

Assumption 4. (i) ¢(-) is continuously three times differentiable on

R.

i) D = diic and j are interchangeable.

(i) J|D¢(x)| dx < o, J' D24 (x)| dx < .

(v) F(e) = j' {adzi’i)}zdx < .

Then, we have the following result.

Theorem 1. Suppose that Assumptions 1-4 hold. If E|At,N|2 =0

(—t lolg N)’ then the log-likelihood ratio Ay has the following stochastic

expansion under Py;
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N
1 2
AN =S -5 FO)Y Al N +0,(0). 2.8)
t=1
N
where S is a random variable satisfying —o < S < © a.s., and ZAtZ,N
t=1

< o0 a.s.

The proofs of the theorems are relegated to Section 5. From the above,

we have the following result.
Corollary 1. Under the same assumptions as in Theorem 1,
P{ lim Zy >0} =1.
N-ow
From Corollary 1, Theorem 1 of Shiryaev ([11], Chapter VI, Theorem
1, p. 560) implies that, for the financial asset {S; |, there is no
asymptotic arbitrage.

Next, assuming a special form of ¢(-), we consider conditions for

2 . . 2 1
M N> Of N to satisfy the assumption E|4, y|° = O(t Tog N)'

Corollary 2. Assume that ¢;’s are i.i.d. symmetric a-stable r.v.’s for
1 <a<2 This means that, the moment generation function (not

characteristic function) of ¢ is given by

5() = E(e!1) = e " 4 ¢ R, 2.9)

with a scaling factor g > 0. In this case, if

l"tt,N o—1 1
- 00 <(C———, as., (2.10)
Gt,N 0 t,N q[thgN
_ 2 _ 1
for some C >0, and t =1, ..., N, then E|A, | = O(tlogN) holds.

It is known that, if o =2, {¢,} follows Gaussian distribution, if

a =1, {¢} follows Cauchy distribution, which has infinite mean.
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3. Estimation and Test

In this section, we consider estimation of A, ;. We first define a

segment (kernel) estimator of 0, = (w(ug), ao(ug ), a1(ug), -+, ap(ug ))’

for ug € (0, 1]. Let ¢q € N such that |ug — ¢y / N| <1/ N. The estimator

considered in this section is the minimizer of the weighted quasi-
likelihood

N
-k
Ly, N ()= E bLNW(tObN jlk,N(G), (8.1)
=)

where

2
1 (XN — 1)
I, n(B) = 3 {10{% wy, n(0) + —]

wy, N (6)

b
. 2
with wk’N(O) =ag + z Otj(kaj,N -n),
Jj=1

1 1

and W : [— 3 E} — R is a kernel function of bounded variation with

1 1
,[_ZL W(x)dx =1 and J._leW(x) dx = 0. That is, we consider,
2 2

étO,N = arggeq min Ly v(0). (3.2)

Then, we have the following result.
Theorem 2. Suppose that {X; ny :t =1, ..., N} is generated by the tv
ARCH(p) process, which satisfies Assumptions 1-2, and the estimator
éto,N = (D, N> dto,N)' is defined by (3.2). Then, if |ug —ty / N| <1/ N,

we have

g, v+ 1o (Bt (Bry, v )7)) 2 (o) + log §(oy, (1)
Sty (uo )

Ato,N = Ato,N'

A 1
wyy, N (045, N )2
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Let us give an example of asymptotic no-arbitrage test.
Consider the testing problem
Hy : there is no asymptotic arbitrage
v.S.
H; : there is asymptotic arbitrage.
Under H, we assume that {¢,} follows a-stable distribution defined

by (2.9) and

C
W N = GO‘StOEN + mct,N' (33)

Then, {X; y | satisfies the condition (2.10), which implies that there is no

asymptotic arbitrage from Corollary 1. In this case, from Dahlhaus and

Rao [3], it 1s seen that the estimator Ato, n defined in Theorem 2 has the

asymptotic normality

~ d
N (A, N - Ay, n) > N, Q).
Thus,

N 1
(1) Ato,N ~ Ato,N + WN(O, Q),

.. 1
1) A = 0| ———| ass.,
) AN [w/to log N]

which implies that, if ¢, = o( N /log N),
Vo log NAtO,N =0() a.s.

In view of this, if we plot /¢y log N Ato, N, We can detect the existence of

asymptotic arbitrage (see Figures 1 and 2). In practice, Q is often

unknown, but we may ignore Z ~ LN(O, Q) because Z converges

VN
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faster than A, n under ¢ty = o(N /log N). In addition, it is easy to see
that, the test statistic \/W Ato, N diverges under alternative
hypothesis.

4. Simulation

In this section, we examine our approach numerically to verify the

result of Corollary 2. Similar to Corollary 2, {¢;} is supposed to be a

sequence of a-stable r.v.’s. Under the condition, we plot +/¢ log NA::O,N-

Example 1. Let the process {X; y | be the tv ARCH(1) model defined
by,

Xi N =W N + 0N

t t t 2
where e, N = H(ﬁ), Gi?',N = ao(ﬁj + al(ﬁj(Xt—l,N - Ht—1,N) ]

and ¢ ’s are i.i.d. symmetric a-stable r.v.’s defined by (2.9). In order to

satisfy condition (2.10), we assume that,

o
W, N = 000§ N + ————0G; N> (4.1)
t,N 0°t, N tlog N t,N
2 _ (¢ 2
SiLN =\ N {ag + ar(Xy g N — i, N )7 (4.2)
Given {X;, v} = (X N, ..., Xy nN), a segment (kernel) estimator

{04, N} = (01,5, ... Oy, n) is obtained by (3.2). Finally, from {6, .

we obtain the estimator {AtO,N} = (Al,N’ s AN,N) of {4, N}

Model 1. In Figure 1, we plot the graph of 4/t log NAtO,N for o = 2

(Gaussian distribution), N = 10(10)1000, aq = 0.5, a; = 0.2, W(x) = 6

(i—xﬂ, tg = log N, and C = 0.1, 0.1 x log N.
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c=0.1
20 C=0.1"log(n)

100 300 500 T00 900

Figure 1. a = 2.0.

From (2.10), C should be a constant value, which implies that the null
hypothesis should be rejected in the case of C = 0.1 x log N. Indeed, the
test statistic +/tlog N Ato, N tends to increase as N increases. On the
other hand, in the case of C = 0.1, 4/t log NAtO,N converges to a constant

value as N increases.

Model 2. In Figure 2, we plot the graph of /tlog N Ato, N under
Model 1 with o = 1.5.
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0.1
25 — 0

C=
C=0.1"log(n)

=—————

20 -

i I

100 300 500 700 900

Figure 2. o = 1.5.

Similarly to Figure 1, in the case of C = 0.1, the test statistic
Jtlog N. Ato, N converges to a constant value, and in the case of C = 0.1
xlog N tends to increase as NN increases. However, because of heavy tail
of the innovation distribution, the fluctuation of m Ato, N 1is larger
than that of Figure 1.

In practice, we need to define the rejection region of the test above.

For example, by use of bootstrap, we can construct the empirical
distribution of +/tlog NAtO, ~, then the rejection region can be

constructed based on this empirical distribution.
5. Proofs

In this section, we give the proofs of results in the previous sections.

Proof of Theorem 1. From Corollary 5.1.5 of Fuller [4], it is seen
that Taylor expansion of log ¢(¢; + x) at x = 0 leads to,

Det Dzet et—DetZ
log d(c; + Ay ) = log (<) + dﬁzft))At,N% o >¢fb (61)2{ b(e,)}
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x AZy +0,((tlog N)2). (5.1)

From (5.1), we obtain

2 N
. zm(e 2ZD b )¢<e> Db yo YRR

()

which implies

<L D) 1 %5 D%(e,)o(e,) — (Do)} 2
s t=1 ¢(c;) “ +§; ¢(<r) Ao+ opll)
(5.2)
Let
Do(<;) D*p(c)o() = {Dd(e )} |
Yt,N:TGt)At,N+2|: ¢(e ) ()}AE,N-
Then,

1 D2¢(€t) _ D¢(e;) 2 . 2 _
*5{’5{ ) } BSt) T7Ofan -0 6o

i ¢ .
because E{D it t)} = ID‘d)(x) dx =0, i=12 (by Assumption 3(ii)),
f

() -

Also, we can see that

N N
ElZYt,Nl = ZElyt,Nl
t=1 t=1
D¢(e S

D*9(<) _(Dd(e)) | 7l 42
{¢<e (¢<et))+f“}“‘w
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N N 2 2
Dy (<) 1 1D%(<,)| . .| Do) 5
< E E|A — E E Fle)ElA
<2 e uv|+2t21{ o | P E Ry | TP
< . (by Assumption 4(iii) and (iv)) 5.4)

Hence, {Y; y} is a martingale difference sequence. By Doob’s martingale

convergence theorem (Hall-Heyde [7], Theorem 1.3.9), there exists a
random variable S such that E|S| < «, and

N
DYy oS as (5.5)
t=1

N
Since, ZE|A,52N| < oo, Az2,N > 0 a.s., and E|S| < «, we observe that,
t=1

N
ZA%N <o, a.s., and —o < S <o, a.s. (5.6)
t=1
From (5.2), (5.5), and (5.6), it follows that
N 1 N 1 N
AN = ZYt,N - 57:(6)ZA¢2,N +0,(1)=S8 —55’:(6)ZA):2,N +0,(1),
t=1 t=1 =1

which together with (5.6) implies the conclusion (2.8). O

Proof of Corollary 1. Recall Z = exp Ay, and by Theorem 1, Ay

> - a.s., i.e., P{ im Ay > -} = 1. Therefore,
N—>w

P{ lim Zy >0} = P{ lim e > ¢™} =1, O

N—>w© N—>wo

Proof of Theorem 2. First, by Theorem 2 of Dahlhaus and Rao [3],

we can see

A b
eto,N _)eu()’ (57)

A C((t) s (to) - (to . (o
where ;) n = (“(Wj’ ao(ﬁ), al(ﬁ}, e ap(ﬁj).
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Now, {0,,} is a parameter of ARCH process {X,(ug)}. For each

given g e (0, 1], the stochastic process {X,(ug)} is a stationary ARCH
process associated with the tv ARCH(p) process at times point ug.

Similar to Theorem 1 of Dahlhaus and Rao [3], we can show
2 P 2
XtO,N —>Xt0(u0) , (5.8)
where X, (ug) = p(ug) + o,(ug ), with o,(ug)? = ag(ug) + D> ajlug)
=1
(Xi_j (o) - n(ug)).
From (5.7) and (5.8), it follows that

wyy N (04 n) = @ (%j+ié@(§%j(&o -i.N ~ Mﬁ%)f

j=

p
—>a0(u0)+ Zaj(uo)()?to—j(uo)_ H(uo))2 = Gto(uo )2,
j=1

(5.9)

and

(to) P
(] 5 wtwo). 6.10

Since ¢ is continuous, we obtain

~ A 1 @ A 1
o a0, (O 2 = Tog [ exp g v (B, x} o)

f) log I " ool )xq)(x) dx. (5.11)

Therefore, from (5.9), (5.10), and (5.11), we can see that

g, v+ Lou(Bwty, v By, 7)) 2 1y (1) + log 8o ()

A 1
wto,N(eto,N)§ Gto(uO)

Ato,N = = Ato (u() )

0
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